目的 基于超高效液相色谱-串联四极杆飞行时间质谱(UPLC-Q/TOF-MS)技术结合多元统计学分析没药及其炮制品的倍半萜类成分,并基于HPLC技术建立同时测定没药不同炮制品中4种倍半萜类成分含量的方法。方法 UPLC-Q/TOF-MS法采用Waters acquity BEH C18 (2.1 mm×100 mm,1.7μm)液相色谱柱,柱温40 ℃,流动相为乙腈(A)-体积分数0.1%甲酸水溶液(B),梯度洗脱,流速0.3 mL·min-1;电喷雾离子源,正、负离子模式下采集质谱数据,质量扫描范围m/z 50~1 200。使用SIMCA-P 14.0进行主成分分析(PCA)及正交偏最小二乘法-判别分析(OPLS-DA),筛选得到差异性(VIP>1)的倍半萜类成分。HPLC使用YMC-Pack ODS-A色谱柱(4.6 mm×250 mm,5 μm),流动相为乙腈(A)-体积分数0.1%磷酸水(B),梯度洗脱,流速 1.0 mL·min-1,检测波长分别 210和240 nm;柱温 30 ℃,同时测定没药中2-甲氧基-5-乙酰基-呋喃吉玛烷-1(10)-烯-6-酮(FSA)、-2-甲氧基-8,12-环氧吉玛-1(10),7,11-三烯-6-酮(MCS134)、9-甲氧基没药酮和没药酮等4种倍半萜类成分的含量。 结果 基于UPLC-Q/TOF-MS技术在正、负离子模式下检测出 78个化合物;通过PCA法和OPLS-DA法可以快速、有效区分没药和醋没药,筛选出二者的差异性成分21种。采用HPLC进行4种倍半萜类成分的含量测定,各成分在各自线性范围内呈良好线性关系(r>0.999 0),精密度、稳定性等方法学考察均符合要求。 结论 基于UPLC-Q/TOF-MS技术结合多元统计学方法可以快速、准确区分没药不同炮制品;建立的HPLC测定没药及其炮制品中4种倍半萜类成分的含量方法稳定、可靠,可为其炮制及质量控制提供参考。
Abstract
OBJECTIVE To investigate the primary chemical constituents of myrrh using UPLC-Q/TOF-MS combined with multivariate statistical method for comparing the different chemical constituents of two different types of myrrh products, and develop an HPLC method for simultaneous determination of four chemical constituents in two different types of myrrh products. METHODS Non-targeted analysis was carried out by UPLC-Q/TOF-MS method using an Waters acquity BEH C18 (2.1 mm×100 mm,1.7 μm) column, temperature was maitained at 40 ℃, gradient elution was performed at a flow rate of 0.3 mL·min-1 using acetonitrile (A)-0.1% formic acid aqueous solution (B) as the mobile phase; electrospray ionization (ESI) source was used to acquire mass spectrometry data in positive and negative ion modes with the scanning range of m/z 50-1 200. The PCA and OPLS-DA methods were performed with SIMCA-P14.0 to discover distinct metabolites (VIP>1). HPLC method was used for quantitative analysis of the four chemical components of Myrrh, i.e., (1(10)E,2R*,5R*)-2-methoxy-5-acetoxyfuranogermacr-1(10)-en-6-one, (1(10)E,2R,4R)-2-methoxy-8,12-epoxygemacra-1(10),7,11-trien-6-one, 9-methoxymyrrhone, and myrrhone, which was performed on a YMC-Pack ODS-A column (4.6 mm×250 mm, 5 μm), with a gradient elution of acetonitrile (A)-0.1% aqueous phosphoric acid (B) as the mobile phase at a flow rate of 1.0 mL·min-1. The column temperature was maintained at 30 ℃, and the detection wavelengths were set at 210 and 240 nm. RESULTS Based on UPLC-Q/TOF-MS technology, 78 chemical components were identified in myrrh, and 21 components with significant differences in content were screened and identified in positive and negative ion modes. For quantitative analysis, a technique for concurrently identifying four chemical components in myrrh using HPLC was established. Within the investigated linear ranges, satisfactory linearities were attained with good coefficients (r>0.999 0), and the methodological analysis revealed that the method had good reproducibility, precision and stability. CONCLUSION An accurate and effective qualitative analytical technique for identifying the chemical components of myrrh is provided by UPLC-Q/TOF-MS. The developed HPLC method for the content determination of four chemical components is stable and reliable, which can be used for the processing and quality control of myrrh.
关键词
没药 /
超高效液相色谱-串联四极杆飞行时间质谱 /
高效液相色谱法 /
主成分分析 /
正交偏最小二乘法-判别分析 /
含量测定
{{custom_keyword}} /
Key words
myrrh /
UPLC-Q/TOF-MS /
HPLC /
PCA /
OPLS-DA /
content determination
{{custom_keyword}} /
中图分类号:
R917
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Editorial Board of Chinese Materia Medica, National Administration of Traditional Chinese Medicine. The Chinese Materia Medica(中华本草). Vol 5. Shanghai:Shanghai Science and Technology Press,1999:26-29.
[2] HA R W,ZHOU H Y,BAI YI, et al. Chemical components of Myrrha:a review. Mod Chin Med(中国现代中药),2022,24(7):1374-1386.
[3] Ch. P(2020)Vol Ⅰ(中国药典2020年版. 一部). 2020:193-194.
[4] SHU S L,MIAO X D,LI J S, et al. Combination characteristics of frankincense and myrrh and progress and prospect of their combination efficacy and mechanism. China J Chin Mater Med(中国中药杂志),2022,47(21):5789-5796.
[5] SHU S L,JIANG H F,YAN H, et al. Quality analysis and evaluation of myrrh. Chin J Tradit Herb Drugs(中草药),2012,43(2):364-371.
[6] DONG L,CHENG L Z,YAN Y M, et al. Commiphoranes A-D,carbon skeletal terpenoids from Resina Commiphora. Org Lett,2017,19(1):286-289.
[7] SHEN T. Isolation,evaluation,biological evaluation and microbial transformation of secondary metabolites from the resinous exudates of three Commiphora species. Jinan:Shandong University,2009.
[8] KUNK K,JÜRGENLIEMK G,LIPOWICZ B, et al. Sesquiterpenes from Myrrh and their ICAM-1 inhibitory activity in vitro. Molecules,2020,26(1):42. DOI: 10.3390/molecules26010042.
[9] YU Y F,LIU Y H,CHEN X H, et al. Cadinane-type sesquiterpenes from the resinous exudates of Commiphora myrrha and their anti-Alzheimer's disease bioactivities. Fitoterapia,2020,142:104536. DOI: 10.1016/j.fitote.2020.104536.
[10] LI S G,YANG G C,ZHAO N, et al. Chemical constituents from Myrrha and their antitumor activities. Chin J Tradit Herb Drugs(中草药),2017,48(5):853-858.
[11] DONG L,LUO Q,CHENG L Z, et al. New terpenoids from Resina Commiphora. Fitoterapia,2017,117:147-153.
[12] XU J,GU Y Q,LI Y S, et al. Sesquiterpenoids from the resinous exudates of Commiphora myrrha and their neuroprotective effects. Planta Med,2011,77(18):2023-2028.
[13] ZHAO N,YANG G C,LI X Y, et al. Isolation and identification of terpenoids from Myrrh. Chin J Med Chem(中国药物化学杂志),2015,25(6):466-469,484.
[14] WANG C C,XIA H,LIANG N Y, et al. A new cadinane-type sesquiterpenoid from Commiphora myrrha. Acta Pharm Sin(药学学报),2021,56(3):831-834.
[15] DEKEBO A,DAGNE E,HANSEN L K, et al. Crystal structures of two furanosesquiterpenes from Commiphora sphaerocarpa . Tetrahedron Lett, 2000, 41(50):9875-9878.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家级大学生创新创业训练计划项目资助(202110412039S);江西省中医药管理局第二届国医名师(龚千锋)工作室项目资助(赣中医药综合12号);第二届全国名中医(龚千锋)传承工作室项目资助(国中医药办人教函245号);国家中医药管理局2022年全国名老中医药专家(龚千锋)传承工作室建设项目资助(国中医药人教函75号)
{{custom_fund}}